发表于 2005-11-18 13:17 IP属地:未知
•最高车速(km/h)------
汽车在水平良好路面上汽车能达到的最好行驶车速。
•加速时间------
> 汽车的加速性能,包括汽车的原地起步加速时间和超车加速时间。原地起步加速时间,指汽车从静止状态下,由第一挡起步,并以最大的加速强度(包括选择最恰当 的换挡时机)逐步换至高挡后,到某一预定的距离车速或车速所需的时间。目前,常用0--96KM所需的时间(秒数)来评价。超车加速时间,用最高挡或次高 挡全力加速至某一高速所需要的时间。加速时间越短,汽车的加速性就越好,整车的动力性随即提高。
•最大爬坡度(%)------
汽车满载时的最大爬坡能力。
•最小转弯直径------
当转向盘转到极限位置,汽车以最低稳定车速转向行驶时,外侧转向轮的中心平面在支承平面上滚过的轨迹园直径。它在很大程度上表征了汽车能够通过狭窄弯曲地带或绕过不可越过的障碍物的能力。转弯直径越小,汽车的机动性能越好。
•前置前驱(FF)------
所 谓前置前驱,是指发动机前置,前轮驱动的驱动形式。这是1970年代后才真正兴起和在技术上得以完善的驱动形式,目前大多数中、小型轿车都采用了这种驱动 形式。其将变速器和驱动桥做成了一体,固定在发动机旁将动力直接输送到前轮驱动车辆前进,用形象的话来说,是“拉”着车辆前进。前置后驱(FR)所谓前置 后驱,是指发动机前置,后轮驱动的驱动形式。这是一种传统的驱动形式,广州人所熟悉的广州标致轿车,就是一种典型的前置后驱轿车。采用这种驱动形式的轿 车,其前车轮负责转向任务,后轮承担驱动工作。发动机输出的动力通过离合器、变速器、传动轴输送到后驱动桥上,驱动后轮使汽车前进,用形象的话来说,是 “推”着车辆前进。前置后驱的车辆转弯时易出现转向过度的情况。
•全轮驱动(All Wheel Drive)------
主 变速器通过一个辅助变速器将动力传送到前轮和后轮. 辅助变速器通常有三档选择; 空档, 四轮驱动高档, 四轮驱动低档. 空档时, 四轮驱动就变成了两轮驱动.四轮驱 动高档适合于恶劣的路面驾驶, 例如,雨雪天和多沙石路面. 四轮驱动低档则适合高难度的越野驾驶。
•四轮驱动系统(4WD)------
4WD-4 Wheel Drive System四轮驱动系统,4WD系统是将引擎的驱动力从2WD系统的二轮传动变为四轮传动, 而 4WD系统之所以列入主动安全系统, 主要是 4WD系统有比 2WD 更优异的引擎驱动力应用效率, 达到更好的轮胎牵引力与转向力的有效发挥, 因此就安全性来说, 4WD系统对轮胎牵引力与转向力的更佳应用, 造成好的行车稳定性以及循迹性, 除此之外 4WD系统更有 2WD所没有的越野性。4WD目前大致可分短时 (PART TIME 4WD)及全时 (FULL TIME 4WD)四轮传动系统, 短时四轮传动系统可依驾驶者的需求, 选择二轮传动或四轮传动, 这种传动系统是属于比较传统的 4WD系统, 从越野性的观点来看, 此种传动系统当选择四轮驱动模式时前后轮系直接连结,可确保前后轮的驱动力输出, 因此此种系统系属于适合越野的 4WD系统。另一种为全时 4WD系统, 此种系统不需驾驶人操作, 车辆总是处于四轮驱动系统, 此种系统可经由前后驱动力的分配, 可达到更完美的胎驱动力及转向力的最佳化配置, 系属于高性能传动系统, 除了配置于一般的越野吉普车外, 亦常用于一些高性能的轿跑车上。
•离合器------
将来自引擎的动力,给予传达,或予截断的机构,使用于截断与变速机构之连结使引擎起动,或使引擎处于旋转状态停车,或变速机构的齿轮之变换,或将离合器接续做车辆徐徐出发等。
•离合器片------
作为传递引擎动力到变速箱的媒介物。
•液压式离合器系统------
利用特殊钢绳,连接踏板与释放杆间,作为切断或接通的连杆机构。
•汽车变速器------
通过改变传动比,改变发动机曲轴的转拒,适应在起步、加速、行驶以及克服各种道路阻碍等不同行驶条件下对驱动车轮牵引力及车速不同要求的需要。通俗上分为手动变速器(MT),自动变速器(AT), 手动/自动变速器,无级式变速器。、
•手动变速箱------
需要离合器配合操纵的变速机构,可依车辆行走阻力的变化,变换引擎的扭矩,使车辆正常行驶。
•自动变速箱------
没有装置操作变速机的离合器机构,操纵机构是没有选择杆,附有P(停车)、R(倒车)、N(空档)、D(高速)、L(低速)等记号。
•无级变速箱------
无 级变速传动属于自动变速的一种类型。它的英文全称Continuously Variable Transmission,简称CVT。这种变速器和普通自动变速器的最大区别,是它省去了复杂而又笨重的齿轮组合变速传动,而只用了两组带轮进行变速传 动。通过改变驱动轮与从动轮传动带的接触半径进行变速的,设计构思十分奥妙。发明这种变速传动机构的是荷兰人。它具有零件少,体积小,重量轻,与普通自动 变速器比较具有较高的传动效率,油耗较低的优点。但缺点也是明显的,就是传动带很容易损坏,不能承受较大的载荷,但在小功率汽车上很有市场。无段变速箱轿 车一样有自己的档位,停车档P、倒车档R、空档N、前进档D等,只是汽车前进自动换档时没有突跳的感觉,十分平稳。
•同步器------
变速器的换档操作,尤其是从高档向低档的换档操作比较复杂,而且很容易产生轮齿或花键齿间的冲击。为了简化操作,并避免齿间冲击,可以在换档装置中设置同步器。
•行星齿轮装置------
属于自动变速箱内的齿轮组,如太阳系运动状况组成的齿轮,有太阳齿轮、行星齿轮、环齿轮、行星齿轮架所构成,由液压控制,由选择而可获得各种减速比。
•超速传动------
使变速箱的输出轴回转数超过引擎的转速,可降低燃料消耗量,噪音,震动均随之减少的装置。一般称O/D档,即第五档,自动变速箱亦有加装此装置。
•万向节------
可让动力传送到成一角度的二个轴,其中包括二支Y型以及一个叫做十字轴架的十字型构件。
•移动节------
有外栓槽和内栓槽与二轴连接。栓槽不但可以使两轴一起转动,且也可以允许二轴沿轴线作有限度的移动,亦即可应付传动轴的长度变化。
•传动轴------
连接或装配各项配件而可移动或转动的圆形物体配件,一般均使用轻而抗扭性佳的合金钢管制成。
•驱动轴------
多使用在前轮驱动汽车上,除了可传递由变速箱来的动力到左右两前轮外,还需配合转向角度的改变。
•主减速比------
对汽车的动力性能和燃料经济性有较大的影响。一般来说,主减速比越大,加速性能和爬坡能力较强,而燃料经济性比较差。但如果过大,则不能发挥发动机的全部功率而达到应有的车速。主减速比越小,最高车速较高,燃料经济性较好,但加速性和爬坡能力较差。
•差速器------
传递推进轴的回转动力至后左右轮所需之差异的旋转速度,使汽车能够自由转弯行驶的一种齿轮装置。
•轮间差速器------
装在同一驱动桥两侧驱动轮之间的差速器。
•轴间差速器------
装在在多轴驱动汽车的各驱动桥之间的差速器。
•车架------
汽车车架是整部汽车的基础,发动机、变速器总成,转向器、传动轴,前后桥等部件装在汽车车架上。通常车架由纵梁和横梁组成。一些客车和轿车的车身和车架制成一体称为"承载式"车身,不另设车架。
•车桥------
汽车的车桥包括转向桥,转向驱动桥,驱动桥和支持桥。由于车桥与悬架结构匹配形式不同,又分为整体式和断开式车桥。
•悬架------
悬 架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并 衰减由此引起的震动,以保证汽车能平顺地行驶。典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有 钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。悬架是汽车中的一个重要总成, 它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。从外表上看,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是 一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。比如,为了取得良好的 舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽 车的转向,容易导致汽车操纵不稳定等。
•非独立悬架------
非 独立悬架的结构特点是两侧车轮由一根整体式车架相连,车轮连同车桥一起通过弹性悬架悬挂在车架或车身的下面。非独立悬架具有结构简单、成本低、强度高、保 养容易、行车中前轮定位变化小的优点,但由于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。
•独立悬架------
独 立悬架是每一侧的车轮都是单独地通过弹性悬架悬挂在车架或车身下面的。其优点是质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较 软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震 动。不过,独立悬架存在着结构复杂、成本高、维修不便的缺点。现代轿车大都是采用独立式悬架,按其结构形式的不同,独立悬架又可分为横臂式、纵臂式、多连 杆式、烛式以及麦弗逊式悬架等。
•麦克弗逊式独立悬架------
是绞结式滑柱与下横臂组成的悬架形式,减振器可兼做转向主销,转向节可以绕着它转动。特点是主销位置和前轮定位角随车轮的上下跳动而变化。这种悬架构造简单,布置紧凑,前轮定位变化小,具有良好的行驶稳定性。所以,目前轿车使用最多的独立悬架是麦弗逊式悬架。
•横臂式悬架------
横 臂式悬架是指车轮在汽车横向平面内摆动的独立悬架,按横臂数量的多少又分为双横臂式和单横臂式悬架。单横臂式具有结构简单,侧倾中心高,有较强的抗侧倾能 力的优点。但随着现代汽车速度的提高,侧倾中心过高会引起车轮跳动时轮距变化大,轮胎磨损加剧,而且在急转弯时左右车轮垂直力转移过大,导致后轮外倾增 大,减少了后轮侧偏刚度,从而产生高速甩尾的严重工况。单横臂式独立悬架多应用在后悬架上,但由于不能适应高速行驶的要求,目前应用不多。双横臂式独立悬 架按上下横臂是否等长,又分为等长双横臂式和不等长双横臂式两种悬架。等长双横臂式悬架在车轮上下跳动时,能保持主销倾角不变,但轮距变化大(与单横臂式 相类似),造成轮胎磨损严重,现已很少用。对于不等长双横臂式悬架,只要适当选择、优化上下横臂的长度,并通过合理的布置、就可以使轮距及前轮定位参数变 化均在可接受的限定范围内,保证汽车具有良好的行驶稳定性。目前不等长双横臂式悬架已广泛应用在轿车的前后悬架上,部分运动型轿车及赛车的后轮也采用这一 悬架结构。
•多连杆式悬架------
多 连杆式悬架是由(3—5)根杆件组合起来控制车轮的位置变化的悬架。多连杆式能使车轮绕着与汽车纵轴线成二定角度的轴线内摆动,是横臂式和纵臂式的折衷方 案,适当地选择摆臂轴线与汽车纵轴线所成的夹角,可不同程度地获得横臂式与纵臂式悬架的优点,能满足不同的使用性能要求。多连杆式悬架的主要优点是车轮跳 动时轮距和前束的变化很小,不管汽车是在驱动、制动状态都可以按司机的意图进行平稳地转向,其不足之处是汽车高速时有轴摆动现象。
•纵臂式悬架------
纵 臂式独立悬架是指车轮在汽车纵向平面内摆动的悬架结构,又分为单纵臂式和双纵臂式两种形式。单纵臂式悬架当车轮上下跳动时会使主销后倾角产生较大的变化, 因此单纵臂式悬架不用在转向轮上。双纵臂式悬架的两个摆臂一般做成等长的,形成一个平行四杆结构,这样,当车轮上下跳动时主销的后倾角保持不变。双纵臂式 悬架多应用在转向轮上。
•主动悬架------
主 动悬架是近十几年发展起来的、由电脑控制的一种新型悬架。它汇集了力学和电子学的技术知识,是一种比较复杂的高技术装置。例如装置了主动悬架的法国雪铁龙 桑蒂雅,该车悬架系统的中枢是一个微电脑,悬架上的5种传感器分别向微电脑传送车速、前轮制动压力、踏动油门踏板的速度、车身垂直方向的振幅及频率、转向 盘角度及转向速度等数据。电脑不断接收这些数据并与预先设定的临界值进行比较,选择相应的悬架状态。同时,微电脑独立控制每一只车轮上的执行元件,通过控 制减振器内油压的变化产生抽动,从而能在任何时候、任何车轮上产生符合要求的悬架运动。因此,桑蒂雅轿车备有多种驾驶模式选择,驾车者只要扳动位于副仪表 板上的“正常”或“运动”按钮,轿车就会自动设置在最佳的悬架状态,以求最好的舒适性能。主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起 弹簧变形时,主动悬架会产生一个与惯力相对抗的力,减少车身位置的变化。例如德国奔驰2000款Cl型跑车,当车辆拐弯时悬架传感器会立即检测出车身的倾 斜和横向加速度。电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬架上,使车身的倾斜减到最小。
•钢板弹簧------
扁平长方形的钢板呈弯曲形,以数片迭成的底盘用弹簧,一端以梢子安装在吊架上,另一端使用吊耳连接到大梁上,使弹簧能伸缩。目前适用于中大型的货卡车上。
•螺旋弹簧------
螺旋弹簧为独立式悬吊装置使用最多之弹簧,以弹簧钢卷成螺旋状。
•扭杆弹簧------
扭杆一端固定在车架上,另一端使用臂与车轮连接,车轮上下跳动时使扭杆扭转,以扭转弹力来吸收震动,构造简单占位置小,适合小型车使用,但材质要佳。
•稳定杆------
稳定杆属横向装置于车架与控制臂之间,其功用可减少悬吊系统的移动及车身摇摆,尤其汽车转弯时,因离心力作用,会使车身发生倾斜,此杆抗衡扭力的作用足以减轻汽车偏外的程度。
•避震器------
避震器的需求是由于弹簧不能马上稳定下来,也就是说弹簧被压缩再放开以后,它会持续一段时间又伸又缩,所以避震器可以吸收车轮遇到凹凸路面所引起的震动,使乘坐舒适。
•前悬挂------
前悬挂系统使前轮可以上下移动并吸收路面震动,但是也须使车轮能左右摆动,以便汽车转向。除大货卡车外,大多的车辆已普遍采用独立式悬挂装置,左右轮互相无关系,为独立动作。
•后悬挂------
一般车辆后悬挂系统会采用钢板弹簧,或螺旋弹簧,但现今的轿车为使乘坐舒适,亦采用独立悬挂系,与前悬挂系相同,可以使四个轮子各自独立,为减少轮胎磨损及行驶稳定,需作后轮定位。
•制动装置------
是 按照需要使汽车减速或在最短的距离内停车,(使汽车)在保证安全的前提下尽量发挥出高速行驶的性能的装置。一般分为鼓式和盘式两种。鼓式制动器的优点是, 成本低,防尘,便于同时作为驻车制动器。缺点是尺寸大,质量重,制动热量不易散发出去,制动稳定性不好。盘式制动器是目前轿车前轮常用的制动器。一般都是 钳盘式制动器。盘式制动器与传统的鼓式制动器比较,有以下有点,散热条件好,因此制动稳定性好,抗热衰退性强; 尺寸和质量小。散热条件好,因此制动稳定性好,抗热衰退性强; 尺寸和质量小。
•制动距离------
制动距离是衡量一款车的制动性能的关键性参数之一,它的意思就人们在车辆处于某一时速的情况下,从开始制动到汽车完全静止时,车辆所开过的路程。
•主剎车系统------
汽车行驶时常用之剎车都是脚操作,故又称脚剎车(Foot Brake)。驾驶人踩下剎车踏板后即由机械或液压将剎车力传到车轮之制动装置使产生磨擦作用。
•驻车剎车系统------
驻车剎车又称手剎车,为汽车停驻时,防止车辆滑行之制动装置。一般有装在传动轴之中间制动式,及直接控制后轮制动式两种。
•剎车总泵及剎车分泵------
油压剎车的主要配合部份,其上面有储蓄剎车油的槽池,下方是汽缸内配有活塞。活塞是在缸内受剎车踏板再经推杆起作用,将缸内的剎车油压传至各轮分缸,亦是油压剎车装置,配置在各车轮内的制动缸。
•动力剎车器------
以引擎真空及油压操纵Booster等作用补助剎车力量的剎车。
•剎车摩擦片------
剎车蹄片上的制动表面所张贴的摩擦材料,一般大型汽车是以铆钉固定,而小型车则用粘剂加压张贴之。
•剎车蹄片------
受剎车凸轮或推杆的作用量被推向外展开压制剎车鼓,而起制动作用的配件,其形状似如半月形。
•鼓式制动------
由剎车底板、剎车分泵、剎车蹄片等有关连杆、弹簧、梢钉、剎车鼓所组成。目前仅普通采用于后轮。
•盘式制动 ------
又称碟式制动,使用金属块(碟)而不用鼓轮,在剎车碟的两边都有一平坦的剎车蹄,当剎车总泵来的油压压送到分缸,使剎车蹄向剎车碟夹住,以达到剎紧的效果,目前已普遍用于前轮,有的高级车装置四轮碟式剎车,其优点是作用灵敏,散热良好,不必调整剎车间隙,保养容易。
•剎车油------
液压剎车系统所使用的液体称为剎车油,它必须不起化学作用,不受高温的影响,对金属及橡胶不会产生腐蚀、软化、膨胀之影响,目前所采用的有DOT3、DOT4、DOT5。
•真空助力器------
利用发动机喉管处的真空度来帮助驾驶员操纵制动踏板。根据真空助力膜片的多少,真空助力器分为单膜片式和串联膜片式两种。
•转向器型式------
目前常用的有齿轮齿条式、蜗杆曲柄销式和循环球式。它的作用是增大转向盘传到转向传动机构的力和改变力的传递方向。
•转向拉杆------
此装置是被用来连接前轮转向节和转向齿轮,使方向盘转动时,可使前轮由一边摆向另一边。
•转向机------
固定在转向机轴下端的齿轮和装配在转向臂的齿轮总称。可将方向盘的旋转动作,转换成拉杆的直线运动。有二种基本的转向机形式:循环球式和齿轮齿条式。
•循环球式转向机------
此种转向机,利用内部的循环珠,使螺母和螺杆之间的接触摩擦大大减少,让驾驶者操作方向盘轻巧方便。
•齿轮齿条式转向机------
它 由方向盘、方向轴、方向节、转动轴、转向器、转向传动杆和转向轮(前轮)等组成。方向盘操纵转向器内的齿轮转动,齿轮与齿条紧密啮合,推动齿条左移动或右 移动,带动转向轮摆动,从而改变轿车行驶的方向。这种转向机构与蜗杆扇形齿轮等其它类型的转向机构比较,省略了转向摇臂和转向主拉杆,具有构件简单,传动 效率高的优点。而且它的逆传动效率也高,在车辆行驶时可以保证偏转车轮的自动回正,驾驶者的路感性强。
•动力转向------
汽车所使用的动力转向系统,基本上是经修改的手动转向系统,主要的是增加一个助力器,以帮助驾驶者。
•四轮转向------
所 谓四轮转向,是指后轮也和前轮一样具有一定的转向功能,不仅可以与前轮同方向转向,也可以与前轮反方向转向。其主要目的是增强轿车在高速行驶或在侧向风力 作用下的操纵稳定性,改善低速时的操纵轻便性,在轿车高速行驶时便于由一个车道向另一个车道的移动调整,以减少调头时的转弯半径。轮胎的类型与规格国际标 准的轮胎代号,以毫米为单位表示断面高度和扁平比的百分数,后面加上轮胎类型代号,轮辋直径(英寸),负荷指数(许用承载质量代号),许用车速代号。例 如,轮胎类型代号,轮辋直径(英寸),负荷指数(许用承载质量代号),许用车速代号。例如
•无内胎轮胎------
顾 名思义,无内胎轮胎就是没有内胎的轮胎。无内胎轮胎俗称原子胎或真空胎,这种轮胎是利用轮胎内壁和胎圈的气密层保证轮胎与轮辋间良好的气密性,外胎兼起内 胎的作用。无内胎轮胎的特点是无内胎,轮胎变得更轻,有利于汽车的高速行驶;由于轮胎气密层是将一层内膜紧粘在轮胎内壁上,使轮胎在高速行驶中不易聚热, 当轮胎受到钉子或尖锐物穿破后,还可继续行驶一段距离。
•内胎------
以良质的橡胶制成,充填空气支持车重,配装在外胎内部,目前小轿车较少采用,而大客货车仍普遍用之。
•斜交轮胎------
帘布层和缓冲层各相邻层帘线交叉排列,各层帘线与胎冠中心线成350~400的交角,因而叫斜交轮胎。在帘布层与胎面之间为缓冲层。
•子午线轮胎------
轮胎的帘线与胎面中心线呈90°或接近90°角排列,帘线分布如地球的子午线,因而称为子午线轮胎。在帘布层与胎面之间为带束层。带束层内各层帘线与胎面中心线夹角为10°~20°
•轮胎尺寸------
轮 胎尺寸印在胎壁上,表示方法有二种,即如34*7或7.50-20等表示之。前者为高压轮胎,后者为低压轮胎。另外也有许多记号,例如D用于轻型汽车,F 用于中型汽车,G指标准型汽车,H、L、J是用于大型豪华及高性能汽车。如胎壁上加印个R,如175R13,表示轮胎是径轮胎,宽长175mm(6.9英 吋),装在轮圈直径13英吋(330mm)在车轮上,一般也会刻上RADIAL字。
•轮胎面------
指轮胎面接触在地面的部份,为防止打滑及散热起见,在轮胎面设置有许多花纹。
•钢圈------
大多数车辆所使用的钢圈为钢材压制及焊接而成,目前的钢圈为钢材压制及焊接而成,目前的钢圈外环制造的很精确,以装配无内胎的轮胎。
•铝合金钢圈------
质轻,加工容易,是一体铸成,不易变形,外观多变化,目前多采用,有省油,导热性良好,强度分布均匀,减少滚动噪音的优点。
•轮胎平衡------
是前轮定位中,对轮胎的检查项目之一,轮胎若不平衡,会造成车辆行驶时,左右偏摆震荡上下跳动,方向盘摆震的现象,驾驶乘座极不舒适,必须配挂重铅块于钢圈的两侧,使之平衡。
•车轮定位------
汽车的前轮,为顾及操作容易及行驶上的安全,减少轮胎的磨损,于设计时则订定各项角度,即前束、内倾角、外倾角、后倾角,转向前展等五个项目,近年来车辆多采用四轮独立悬吊,而后轮亦做有前束及外倾角,以增加行驶的稳定及舒适性,故有后轮定位。
•主销后倾角------
当汽车在水平面停放时,在汽车的纵向垂面内,主销上部向后倾斜的角度。
•主销内倾角------
当汽车在水平面停放时,在汽车的横向垂面内,主销轴线上部向内与地面垂线的夹角。
•前轮外倾角------
当汽车在水平面停放时,在汽车的横向垂面内,车轮平面向外与地面垂线的夹角。
•前轮前束------
两前轮后边缘的距离A与前边缘的距离B的差。
•偏滑测试------
以车子行驶1公里,车子偏向横侧之公尺数表非,即m/km,一般不得超过3-5m/km。车辆产生侧滑之原因为前束、外倾角,后倾角等调整不良之结果,所以监理站做车辆安全检查时,只需量偏滑值即可。
•智能轮胎------
智能轮胎内装有计算机芯片,或将计算机芯片与胎体相连接,它能自动监控并调节轮胎的行驶温度和气压,使其在不同情况下都能保持最佳的运行状态,既提高了安全系数,又节省了开支。估计若干年后的智能轮胎能探测出路面的潮湿后改变轮胎的花纹,以防打滑。